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We consider a pre-stressed material containing a crack of a length 2a situated in x1x2 – plane in mixed mode of classical 
fracture. We suppose that the material is unbounded and the crack faces are acted by constant normal and tangential 
incremental stresses. The initial applied pre-stress is in direction of the crack. Critical values of the incremental stresses and 
the direction of crack propagation are determined. A numerical application for a particular case of boron-epoxy  composite 
is considered. 
 
(Received September 1, 2008; accepted October 30, 2008) 
 
Keywords: Crack, Sih’s fracture criterion, Resonance, Boron – epoxy composite 
 
 
 

1. Introduction 
 
We consider a homogeneous, advanced material, pre-

stressed and corresponding to a plane state. The advanced 
material represents an unbounded elastic composite 
containing a crack of a length 2a situated in x1x3 – plane 
and its faces are acted by constant incremental stresses p 
making an angle β with Ox2 – axis. The initial applied 
stress σ0 is in direction of the crack, as is shown in Fig. 1. 

Our first aim is to determine the elastic state produced 
in the body using Guz's representation of incremental 
fields. 

Our second aim is to determine the critical values of 
the incremental stresses and the direction of crack 
propagation. To do this, we use Sih's generalized fracture 
criterion for orthotropic elastic composite. 

In the last part, using numerical analysis, we obtain 
for a crack in mixed mode in a pre-stressed boron - epoxy 
composite the critical values of the stresses which produce 
crack propagation and the direction of propagation. 

 
 
2. Guz’s representation of the incremental  
    fields 
 
The representation of elastic fields by complex 

potential in the classical case of anisotropic elastic bodies 
was given by Leknitskii [1]. This representation was used, 
for instance, by Sih and Leibowitz [2] to analyze problems 
concerning the existence of a crack in an anisotropic 
elastic solid. The results obtained by Leknitskii were 
generalized for the case of a pre-stressed material by Guz 
[3-4] who also has analysed the influence of the initial 
stresses on the behavior of a solid body containing cracks. 

We assume that the orthotropic, initial deformed 
composite material is in plane state relative to the x1x2 
plane. As we already know in this case, the incremental 
displacement field can be expressed by two real potential 

φ(1), φ(2), which satisfy the incremental equilibrium 
equations (see [3] – [6]): 
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In their turn the elastic coefficients can be expressed 
using the engineering constants of the material and we 
have the following: 
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In above relations E1, E2, E3 are Young’s moduli in 
corresponding directions of material, ν12, …, ν32 are 
Poisson’s ratios and G12, G23, G31 are  the shear moduli in 
the corresponding symmetry planes. 

In what follows, we assume ( ) ( ) 0, 21
2 ≡xxϕ  and, in 

order to simplify the writing, we use the notation 
( ) ( ) ( )2121
1 ,, xxxx ϕϕ = . 

According to (1), ( )21 , xxϕϕ =  must satisfy 
equation 
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According to Guz’s representation (see [3] – [5]), the 

incremental displacement fields u1 and u2 are expressed in 
terms of ( )1ϕϕ =  by the relations 
 

( ) 12,121211221 ϕωω +−=u , 

                 22,211211,11112 ϕωϕω +=u .                   (8) 
 

Let us introduce now the quantities ν1 and ν2 defined 
by 

                 ., 2
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2
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Now, the differential equation  (7) becomes 
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Also, from (2) and (9), it follows that ν1 and ν2 satisfy 
the following algebraic equation 
 

                    022 =++ BAνν .   (11) 
 
Hence, 
 

,2
1 BAA −−−=ν  

                BAA −+−= 2
2ν .   (12) 

 
Also, it can be seen that the differential equation (10) 

can be written in the following equivalent form: 
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Let us introduce now the parameters 2
1μ  and 2

2μ  
defined by equations 
 

2
2
21

2
1 , νμνμ == .   (14) 

 
From (11), we can conclude that μ1 and μ2 satisfy the 

algebraic equation 
 

02 24 =++ BAμμ .   (15) 
 

We assume that the initial deformed equilibrium 
configuration of the body is locally stable. We can 
conclude that the equation (15) cannot have real roots (see 
[5]). Consequently, from (14) we can conclude that the 
roots ν1 and ν2 must satisfy one of the following two 
conditions: 
 

(1) 0Im ≠jν  or  

    (2) 0Im =jν and 2,1,0Re =< jjν .     (16) 
   

We denote by μ1, μ2, μ3, μ4 the complex roots of the 
equation (15). These roots are determined by 
If 0Im ≠jν , we have 21 νν =  and we take 
 

2211 , νμνμ −== , 

214123 , μνμμνμ =−=== .  (17) 
 

If 0Im =jν  and 0Re <jν , we take 
 

2211 , νμνμ == , 

224113 , μνμμνμ =−==−= .  (18) 
 

Now, we can see that equation (13) can be expressed 
in the following equivalent form: 
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21 μμ ≠ .      (19) 
 

We introduce now the independent complex variables 
 

              22122111 , xxzxxz μμ +=+= .      (20) 
 

From these relations, we get 
 

           22122111 , xxzxxz μμ +=+= .        (21) 
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Since 21 μμ ≠ , we can see now that the differential 

equation (19) can be expressed in the following equivalent 
form: 
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The general solution of this equation is 
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where ( )jjj zff =  and ( ) 2,1, == jzgg jjj , are 

arbitrary analytic functions of the complex variables jz  

and  jz , respectively. 

We recall now that ( )21 , xxϕϕ =  is a real valued 
function. Hence, we must have 

( ) ( ) 2,1, == jzfzg jjjj . 
Thus, we can conclude that the real displacement 

potential ( )21 , xxϕϕ = , satisfying the differential 
equation (7) can be expressed in terms of two arbitrary 
analytic functions ( )111 zff =  and ( )222 zff = , by the 
following relation due to Guz [3]: 
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Let us introduce now the analytical functions 
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Thus, from (18), we get 
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We introduce the functions ( ) 2,1, =Φ=Φ jz jjj , by 
the following rule: 
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In order to obtain the second expression of Bj, we 

have used the fact that μj satisfy the algebraic equation 
(15), A and B being given by the relation (3). 
After long but elementary computations, we get the 
representation of the incremental fields by two arbitrary 
analytic complex potentials ( )jjj zΦ=Φ  and their 

derivatives ( ) 2,1, =Ψ=Ψ jz jjj : 
 

         ( ) ( ){ }221122 Re2 zz Ψ+Ψ=θ ,  (29) 
 

( ) ( ){ }2222111121 Re2 zaza Ψ+Ψ−= μμθ , (30) 
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We denoted by ( )jj zΨ  the derivates of 

( ) 2,1, =Φ jz jj , i.e. 

( ) ( ) ( )
2,1, =

Φ
=Φ=Ψ j

dz
zd

zz
j

jj
jjjj . (38) 

 
It can be shown that the parameters 2,1, =jjμ  satisfy 
the relations 
 

   ( ) 0Im 21 =μμ  and ( ) 0Re 21 =+ μμ .    (39) 
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We assume that the parameters 2,1, =jjμ  are different, 
i.e. 
 

                             21 μμ ≠ .                            (40) 
 
The expressions of the complex potentials 

( ) 2,1, =Ψ jz jj  corresponding to our mixed mode are 
 

( ) ( )ϕχπ
μ

1

22
11

1
22

⋅
Δ

+
=Ψ

r
KKaz III , 

( ) ( )ϕχπ
μ

2

11
22

1
22

⋅
Δ

+
−=Ψ

r
KKaz III .  (41) 

 
where 

1122 μμ aa −=Δ , 
 
 

    ( ) ϕμϕϕχ sincos jj += .                (42) 

 
and 
                     apK I πβ2sin= , 

                  apK II πββ cossin= .  (43) 
 
are the stress intensity factors corresponding to the first 
respectively second mode of fracture for an applied load 

0>p . 
 
 

3. Sih’s generalized fracture criterion for a  
    mixed fracture mode 
 
Let us denote by W the incremental strain energy 

density, i.e. 
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Let r and φ being the radial distance from the crack tip 

and the angle between radial direction and the line ahead 
the crack, as in Fig. 1. After long manipulations we obtain 
that near the considered crack tip the strain energy has a 
singular part as well a regular part, i.e. 
 

      ( ) ( ) partregulara
r

SrW +=
ϕμ, .    (41) 

 

 
 

Fig. 1. Mixed mode crack propagation. 
 

 
Here ( )ϕS  is Sih’s incremental strain energy density 
factor and is given by 
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We generalize the Sih’s fracture criterion (see [2]) for 

orthotropic or pre-stressed elastic materials, assuming that: 
 
H1: Crack propagation will start in a radial direction cϕ  

along with the incremental strain energy density ( )ϕS  is 
a minimum, i.e. 
 
 



2874                                                            N. Peride, E. M. Craciun, A. Carabineanu, L. Marsavina                                                       

 

         ( ) ( ) 0,0 2
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H2: The critical intensity 
 

                     ( )cc SSS ϕ== min .                 (45) 
 
governs the onset of the crack propagation and it 
represents a material constant independent the crack 
geometry, loading and initial stress. 

Using (42) and (45) we get for the incremental stress 
Pc for which the crack will start to propagate at critical 
direction φc the following equation: 
 

                 ( )cm

c
c s

S
aP

ϕ
42 = .             (46) 

Once Sc is known, the relation (46) can be used to get 
Pc. 

 
4. Numerical results and conclusions.  
 
In this section we shall consider the case of a boron-

epoxy composite material characterized by the following 
parameters: 
 

,10,190 321 GPaEEGPaE ===  

  ,6,7 231312 GPaGGGPaG ===  

              2.0,3.0 231312 === ννν .           (47) 
 

For a composite material is a critical value c
0σ  of the 

initial applied stress 0σ for which such than when 0σ  

tends to c
0σ , the incremental stress cP  converges to zero, 

and it is given by: 
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For our composite material one gets the following 

value: 
 

                839.60 −=cσ .              (49) 
 

So, in our study we shall consider  
( ]0,839.60 −∈σ . From our numerical analysis we 

observe that: 
 

− the strain energy density ( )ϕms  depends in a very 

small manner by 0σ  and in this case the propagation 

angle is in a neighborhood of o70 , as in Fig. 2. 
 
 

 
 

Fig. 2. Representation of the function  ms versus ϕ  and 0σ . 

 
 
− the critical intensity density factor cS  decreases when 

β  decreases and the initial pre-stressed 0σ  doesn’t play 
an important role in this case due to the fact that 

0σ 12 EE <<< , as in Fig. 3. 
 
 

 
 

Fig. 3. Representation of the critical intensity of the 
strain energy density factor S  versus β  and 0σ . 

 
 
− for different values of the angle β  we obtain that the 

minimum of ( )0,σϕS  is obtained for a critical value cϕ , 
as in Fig. 4. 
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Fig. 4. Representation of the the strain energy density factor S  versus ϕ  and 0σ  for different angles β . 

 
 

 
 

Fig. 5. Incremental stress  P  versus ϕ  and 0σ . 

 
 

When 0=β  and the material is unpre-stressed 

00 =σ , we observe that 0=cϕ , an well-known result, 
i.e. in the Mode I of fracture, the crack will propagate 
along its line. 
− using eqs. (46) we found the critical incremental stress 

cP  which produces the initialization of crack propagation, 
as in Fig. 5. 
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